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The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jolntly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to Jolntly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UIICL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of
industry.

Moreover. UHCL established relationships with other universities and re_

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research ant educ_ation programs, while other research

organizations are involved vla the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research obJecUves to advance knowledge in the computing and info_-

tlon sciences. RICIS, workingJointIy with its sponsors, advises on research

needs, recommends principals for conducUng the research, provides tech-

nieal and administrative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.
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RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Jon Beck of West Virginia University. Dr.
E. T. Dickerson served as RICIS research coordinator.

Funding was provided by the NASA Technology Utilization Program, NASA
Headquarters, Code C, through Cooperative Agreement NCC 9-16 between the

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

research coordinator for this activity was Ernest M. Fridge NI, Deputy Chief of the

Software Technology Branch, information Technology Division, Information

Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.
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1 Introduction

1.1 Current Demands in Software Engineering

According to Yourdon [56], software development organizations worldwide are grappling

with "staggering" problems of quality and productivity. Demand for quality SOftware is

increasing because software of poor quality is very expensive and difficult to maintain; the

maintenance portion of the software development process normally consumes from 50% to
80% of total costs [9,42,56]. Improved productivity can reduce risks to schedules and

budgets, and reduce the level of resources needed to build new systems. This is

significant because the demand for new software systems is increasing faster than the

supply of software develope_ [56]. : :_
............ _ r

In both the public and private sectors, there is a recognition that the productivity and

quality of the software development process must be increased to meet the ever-increasing
need for robust and reliable systems. There is a growingconsensus that the incorporation

of reuse will be essential for helping to address these needs. For example, the U. S.

Department of Defense (DoD) has published a Software Reuse Vision and Strategy
document [13] which _culates the DoD vision to drive the software community from its

current "re-invent the software _ cycle to a process-driven, domain-specific, architecture-

centric library-assisted way of constructing software systems. The Software Engineering
Institute has developed and app-iied adomain analys_-pmcess (Feature-Oriented Domain

Analysis, or FODA) and currently is developing a reuse-based software development

methodology that is based on DoD-STD-2167A and focuses on identifying and applying
reusable resources [26]. The Fujitsu corporation recognj_z_ed that in order to remain

competitive in today's market, it needed to greatly upgrade the quality and reduce the

costs of the software which it produced. Fujitsu developed a domain-specific reuse

program for its product line and thereby realized a dramatic increase in productivity and
quality. By reusing tested and proven components, the number of switching systems
delivered on schedule increased from 20% to 70% [44].

Addressing the productivity and quality issues requires a two-pronged approach, involving

improvements in both methodology and tools [48,56]. The methodology component

consists of efforts to move the software development process from its historical roots in

programming art towards the goal of software engineering. According to Hall [19],

current software development practices are not engineering. They lack the discipline,

standards, and mathematical principles which characterize true engineering activities.

For example, object-oriented development methods, while perhaps good, currently are no

more than rules of thumb used by craftsmen. They do not have the predictive power or

verifiability of a mathematical specification. More importantly, there is no way of telling

whether the object structure is in any sense correct or not. Hall claims that to make

software development into an engineering discipline, computer scientists must make sure
that the methods used are scientific and produce predictable and verifiable results. 1
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It is interesting to note that this conflict is not new with Computer Science. In the late 1940s, a
leading physicist argued passionately for the need to create a new discipline, Nuclear Engineering,
because physicists simply were not equipped by their training for the development of basic scientific

(continued...)
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D'Ippolito, et al., state that the primary goal of software developers should be to cast all
new work as slight variations of prior work, the qualities of which are predictable by

formal analysis before they are implemented. This approach emphasizes "problem
setting" over problem solving. In their words:

The problem setting activity is the dogged insistence of seeing the new in terms of

fragments of old paradigms, and appears at first to the non-engineer to be a self-

imposed restraint on artistic creativity. There is creativity in engineering, but it is
not the sort that allows_experimental structures to be tested in public buildings

and machines. The creativity _is in seeing new'uses for old things and in

synthesizing new arrangements of them to satisfy human needs. These constraints

are what ensure routine designs that are less complex, more maintainable, more

predictable in both cost and behavior, and more able to ensure the public safety
[14].

The second component in addressing the issues of productivity and quality in software

development is the creation and use of specific tools to aid humans by automating various

portions of the software development process as prescribed by software engineering

methodologies. From the beginnings of the computer age, computer scientists have used

tools to help automate the steps in software development. As soon as the first software-

programmable machines were available, assemblers, editors, and debuggers were designed
and built to help with the process of software creation. As the size and complexity of

software systems has increased, the need for advancements in tool technology has in-

creased. Examples of tools which have been developed to meet this need include CASE
(Computer Aided Software Engineering) tools, which aid in the activities of software

development, from requirements analysis through maintenance. Two other examples are

program slicing, used mainly to aid in maintenance activities, and interface slicing [7],

developed to facilitate reuse-based software engineering.

1.2 Program Slicing

Program slicing can be viewed as a tool which extracts knowledge from existing systems

to aid in their understanding. From the beginning of the computer age, there has been a

gulf between the languages that humans and machines understand. The very first

computer program existed in the form of hard-wired electrical connections and was not

human readable. Even the early written programs were cryptic and undecipherable to all

but a few. Modern software systems, given their size and complexity, are equally obscure,

their designs and algorithms unknown to any but those who actually had a hand in their

creation. It would require a great deal of time and effort for any other computer scientist,

even an expert, to understand the design of one of these systems by examining its code.

To undertake its maintenance would require a major endeavor.
I

l(...continued)
phenomena into commercial and industrial applications. Noting that Chemical Engineering had
developed from Chemistry a generation earlier, Beck maintained that this was the natural progression
from the ad hoc experimentation of an emerging research area to the routine engineering of applications
[5,6].

-2-



Understanding the designand undertaking the maintenanceof a softwaresystem,
however,is exactlywhat computer scientists are called to do everyday. Becau§eof the
complexityof the systems,they use tools to aid in thesemaintenanceefforts. Program
slicing is such a tool, developed to decrease the level of effort required to understand
complex software systems. From its inception as :an: aid in debugging, the concept of

program slicing has been generalized into a number of different tools, both potential and

realized, in the software engineer's kit. Program slicing has been extended to include

program comprehension, module cohesion estimation, requirements verification, dead code

elimination, and maintenance of various types including reverse engineering,

paralleIization, portability, and reuse component generation.

2 Definitions and Representation Issues

This section contains a discussion of the graph theoretic and program representation

concepts necessary for the material in the following sections. After background syntax

and terminology on graph theory, the main ideas presen_d are:

Programs have been intuitively represented in various ways using mathematical

graphs as the rep_sentation ve_c!e, _ ........... : :: _ i:
The]ntuitive progi:am'_mantics _cribed to these representations have a

mathematical underpinning which gives a precise mathematical semantics to the

representation.

It is the semantics of the program representation graphs which allows reasoning about

slicing which is based on the graph forms.

The following terminology and definitions apply throughout this paper. We present them
here to form a common basis for discussion; the literature varies considerably in details of

syntax and terminology.

2.1 Terminology and Definitions

In this paper, we will employ the following conventions unless we explicitly note

otherwise. A subprogram is a unit of code_ the tem is intended _ denotere _
procedures and functions, including _main _ programs, and where appropriate, more exotic
code units such as Ada tasks. If the language under discussion permits, a subprogram

may be specification, body, or both. If subprogram A contains subprogram B nested

within it, a reference to A will in general not include any reference ._ B unless B is .....

explicitly referenced. A package is a collection of §ubprogram§ and _p]ies at least the

possibility of separate compilation, with allowances made for language systems which do

not have the capacity of separate compilation. Package includes the Aria notion of

package but is not limited to Ada, as it also may be used to mean a set of units in a

standard object library. Module is used as a general term to include both subprogram and

package as described above, when specifying either would be too restrictive. Component
specificallyrefersto a module potentlal]yresiding in a reuse repository. A comp0nent-lS -

thus a code asset of a repository,eitherbefore or afterithas been reused by incorporation

-3-
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into a software system. We use the term element to mean a named programmatic entity.

Types, structures, variables, subprograms, tasks, and exceptions are all included in this
term, but statements, even labeled statements, are specifically excluded.

We describe certain characteristics of a

program element by using the terms visible,

hidden, unprotected, and protected. A

program element is visible if it is visible and
available at least for examination by non-

privilegedportions of the software system.
We use the term hidden to referto a

program element which is not visibleoutside

the scope of itsmodule. An element is

unprotected if there is no language

mechanism applied to it which prevents non-

privilegedaccess to itsinternal structure,

1 package MyPackage is

2 type MyTypel is private;

3 MyVariable: MyTypel;
o,,

5 private

6 type MyType2 is ...;
7

8 end MyPackage;

Figure 1 Example for visibility and

protection

while an element is protected if some form of language-based mechanism, not including

simple scope, is used to limit access to its internal structure by non-privileged portions of

the system. Thus, visible and hidden refer to access to the element's name, while

unprotected and protected refer to an element's internal structure. For example, from the

standpoint of a main Pascal program, a local variable within a subprogram is visible and

unprotected, as only the scoping conventions of the language make the variable
inaccessible to the main program. As another example, the variable MyVariable declared

on line 3 of the Ada package specification shown in Figure 1 is visible and protected. It is

visible because it is available by name to any part of the system which withs this package,

and protected because its internal structure is not available outside the package. Finally,

type MyType2 on line 6 is hidden and protected, as neither its name nor its structure are

visible outside the package. The reason for making a point of using this terminology is

twofold. First, these concepts are language-independent, even though they have been

implemented to various extents in different languages. However, as the implementations

are generally not pure, we do not wish to use terms of a specific language, in order to

avoid the implication that we are referring to a specific language's implementation of one
of these concepts. Second, in discussing the mechanisms of slicing, there are consid-

erations based upon a program element's visibility and protection status before and after

the slicingtransformation. Since these considerations are language-independent, itis

important that colorationsfrom existinglanguage implementations not creep into the
discussion.

2.2 General Theoretic Concepts and Definitions

In thissectionwe present a fairamount of notation and terminology, not out of any claim

that we are making a contribution,but solelyto form a basis for the discussions in this

paper. The literaturecontains a wide variation and disagreement in the notation used to

represent the concepts and structures in thissection;we explain our usage here because

of thislack of consensus. The usage presented here does not come from any singlesource

but rather isa personal blending of ideas from many sources. Two sources which were of

sufficienthelp here to warrant mention are [12,21].

-4-
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2.2.1 Sets, Graphs, and Trees
For subset 2 notation, we use A _ B to indicate that set A is a subset of, and possibly the

same as, set B, and A c B to indicate that A is a proper subset of B so that AvB. The

cardinality of A is denoted by _A ]. A graph 3 is a pair (N,A) where N is a t'mite
nonempty set of nodes or vertices, and A _ NxN is a set of directed edges or arcs between

nodes. The edge denoted (x,y) or x->y leaves the tail or source node x and enters the head

or target node y, making x a predecessor of y, and y a successor of x. The number of
predecessors of a node is its in-degree, and the number of successors is its out-degree.

Since the edges are members of a set, a graph may have at most one edge from a given

node x to another node y. A structure which allows multiple edges from one node to

another is a multigraph. In other words, a graph consists of a set of nodes and a set of

edges, while a multigraph consists of a set of nodes and a bag of edges. A path from x t to

x k is a sequence of length k of vertices (xp x_ .... x k) with xieN , 1 < i < k-1 such that each

pair xi_xi÷fA. Two graphs G 1 and G 2 are isomorphic, denoted G 1 = G 2 iff there exists a
one-to-one correspondence between their sets of nodes and a one-to-one correspondence

between the sets of edges such that the corresponding edges also agree on the

corresponding source and target nodes.

A graph is a tree if it satisfies the three properties:

1

2

3

There is exactly one node, called the root, with in-degree 0.

Every node except the root has in-degree 1.

There is a unique path from the root to each node.

For a tree, predecessor and successor are usually called parent and child respectively.
The transitive and reflexive closures of the parent and child relations are the ancestor and

descendant relations, respectively.

2.2.2 Partial Orderings. and Lattices

A reflexive, antisymmetric, transitive relation on a set S is a partial ordering, denoted by

=. The pair (S,_-) is a partially ordered set, or poset. For a given poset (S,=), = denotes
the reflexive reduction where = = _- - {(x,x)[xeS}. Given a poset (S,=) with a,b e S, then a

join or least upper bound of a and b is an element e:

ceS I a=c h b=c h -3x(xeS h a=x=c h b=x=c)

Similarly, a meet or greatest lower bound of a and b is an element c such that:

ceS I c=a h c=b h -3x(xeS A c=x=a h c=x=b)

Ira and b have a unique join, it is denoted a u b; a unique meet, a n b. A set of pairwise

incomparable elements of a poset is called a cochain.

m

m
I

I

U

i

Unless specified otherwise, all sets herein are finite.

Unless specified otherwise, all graphs herein are directed graphs.
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A lattice L is a poset, every pair of elements of which have a unique join and meet; the

lattice is denoted by the triple L = (S,u,n). An element a of a lattice L is a minimal
element if there does not exist an element b of L such that b _- a. A minimal element a is

also a least element if a = b for every b in L. If L has a least element, it is unique.

Similarly, a is a maximal element if there does not exist a b in L such that a c b, and a

unique maximal element a is a greatest element if b _- a for every b in L. Each element of

the poset is said to be contained in a node of the lattice. Sometimes the node and the

element it contains are used interchangeably.

The power set of a set S, denoted 2 s, is the set of all subsets of S, i.e., 2s = {T I T _ S}. A

particular lattice structure of interest in this paper is the following. Given a finite set S
and the usual set union and intersection operations denoted by U and 17, the poset (2s,c_)

is the basis for the lattice (2S,UJ7). Each node of this lattice contains a unique subset of
the elements of 2 s. We will often refer to this structure as a subset inclusion lattice. This

lattice is of interest here because ff S is the set of all statements of a program then 2 s is

the set of all subsets of the program statements. Since a slice is a subset of program
statements, then every slice corresponds to an element of 2s, and thus to a node in the

lattice (2S,U,fl). This lattice is therefore a convenient structure for discussing slices of a

program and their relationships.

This lattice may be depicted using a Hasse diagram as a

graph in which the greatest element, the set S, is a node

of in-degree 0, and the least element, O, is a node of out-

degree 0. An edge a--_b is drawn in the diagram iff b _ a
and there does not exist a node c such that b _ c _ a. In

this case, a is considered the parent of b, and b the child

of a. Notice that this excludes the possibility that two

separate nodes in the lattice contain the same element.

For example, given the set S = {1,2,3}, the lattice
L = (2S,u,N) is shown in Figure 2.

Given a poset (A,=), the relation = defines a set of

ordered pairs of elements of A. Given a set B _ A, then
some of the ordered pairs of = may also be ordered pairs
of elements of B. The set of those elements of = which

consist of ordered pairs of elements of B is called the

I 2 3

2 13 23

g><g><l
1 2 3

0

Figure 2 Power set lattice

for {1,2,3}

restriction of = to B, and is a partial ordering of B. If the poset (A,=) is a lattice, the new

poset (B,=) is not necessarily a lattice. However, if B includes at least the freatest and
least elements of A, then B must also be a lattice. For example, let A be 2_ as in the

example above, so that the poset (A,_) is shown in Figure 2, and let B = {{1,2},{2,3}}. Then

(B,_) is a poset, but is not a lattice. However, if we consider B' as B augmented with the

greatest and least elements of A, so that B' = {O,{1,2},{2,3},{1,2,3}}, then (B',_) is a lattice.

2.2.3 Flow Graphs

A flow graph is a quadruple (N,A, start, stop) where (N,A) is a graph, starte N is a distin-

guished node of in-degree 0 called the start node, stopeN is a distinguished node of out-

degree 0 called the stop node, there is a path from start to every other node in the graph,

-6-



and there is a path from every other node in the graph to stop. 4 If x and y are two nodes

in a flow graph, then x dominates y iff every path from start to y includes x; y post-domi-

nates x (i.e., x is post-dominated by y) iff every path from x to stop includes y. The

dominance relation is a partial ordering; every node except start has a unique nearest

dominator. The graph of the reflexive and transitive reduction of the dominance relation

is a tree, called the dominance, or dominator, tree. Finding the post-dominators of a flow

graph is equivalent to finding the dominators of the reverse flow graph, the graph in

which the direction of every edge is reversed and the start and stop labels are exchanged.

2.2.4 Dependences
According to Podgurski and Clarke [4i], dependences 5 are ....

relationships among program statements and are of two

types, control and data flow (or simply data) dependences.

In a program, two types of situations create dependences

between two statements, or between a statement and a

predicate. In Figure 3, a control dependence exists between

the predicate A on line 2 and the statement B of line 3; the
execution of B is control-dependent on the value of A

because the value of A immediately controls the execution

of B.

1 begin
2 if A then

3 B;

4 end if;

5 end;

Figure3 Control depen-
dence

In Figure 4, the assignment statement on line 3 is data

dependent on the assignment statement on line 2, because

the correctness of C's value in line 3 depends upon the prior
execution of the statement on line 2. Thus a data depen-

dence exists between two statements when a variable in one

may have an incorrect value if the order of execution of the
two statements is reversed. Another way of stating this is

that one statement is data dependent upon another if data

1 begin
2 C := f (D) ;

3 E := C;

4 end;

Figure 4 Data dependence

can potentially flow from the latter to the former in a sequence of assignment statements.

2.3 Introduction to Program Representation

In one strict view, only a set of machine instructions in a computer's memory can be

termed a _computer program". But this s_ct interpretation _ _al[y _laxed so that
various program representations are spoken of as being,or being equivalent to,computer

programs. Common program representation schemes include high-levelsource code,

pseudocode, and flow charts;the purpose of these various representation forms depend_s ....

upon the context and may include human readability,annotation forverifiability,and

transformation for applicationto a differentplatform such as a parallelmultiprocessor.

In the context ofprogram slicing,program representations are used to facilitatethe auto-

mation ofslicing.For a very simple program, a slicecan be prepared by hand. But with
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Some authors use entry and ex/t for start and stop, respectively; some authors drop the requirement for

a stop node and define a graph as (N,A,start).

Some authors use dependency, singular, and dependencies, plural.
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increasing size and complexity of the program, there is increasing need to employ the

assistance of automation. As discussed in Section 3, current automated slicing techniques

require that information gleaned from a source code form of the program to be sliced be

transformed into some different program representation during the slicing process.
Various program representation schemes have resulted from the search for ever more

complete and efficient slicing techniques.

In the discussions of program representations which follow, it is important to remember

that there is no single correct way of building, say, a control flow graph, nor is there a

single exact set of information which must be available for slicing. Each researcher

presents a different technique or algorithm, according to the needs of the problem at

hand. Nevertheless, there is general agreement as to the class of information to be

contained in each type of program representation for the purposes of slicing. The various

representations shown here are illustrative of these general agreements, but are not

necessarily faithful to any single researcher's style.

A program which is to be modeled with one of these representations is written in some

language. While this discussion concentrates on executable languages, we do not wish to

exclude the possibility of including non-executable forms such as pseudocode or formal

specifications. Each language has its own peculiarities which affect the way it can be

represented, and the form of the representation. In the explanations of the different

representation mechanisms below, it is useful to keep in mind the differences in languag-

es. For example, C has a switch statement structure which allows multiple exits, but C

has no nested subprograms; Pascal has a regular, partitioning, single-exit case statement,

but also has nested subprograms; FORTRAN has an equivalence statement parameter

passing mechanism which allows variable aliasing by array overlap; Ada has various

synchronization mechanisms for tasking. There probably is no perfect universal program

representation scheme because each of these language features may call for a somewhat

different representation mechanism. Conversely, a program representation may well

serve to bridge the gap between disparate languages. For simplicity and for broad

applicability of results, most of the research cited herein has developed slicing based on

the intersection of the features of the traditional procedural languages FORTRAN, C,

Pascal, and Ada.

It is common to represent programs as graphs and lattices pictorially with dosed shapes

standing for nodes and directed lines representing edges. For simplicity, in fact, the
picture is olden spoken of as "being _ the graph or lattice, or the graph as "being _ the

program, but it is important to keep in mind that the picture or graph drawing is only a
representation of an abstract mathematical or programmatic entity. The model may be

imbued with a set of desired semantics, with the nodes and arcs drawn in various shapes

and given various labels, provided that there is an unambiguous and consistent mapping

between the semantics and the model such that the mathematical or syntactic integrity of

the model is maintained. In this case, results derived from mathematical proofs and

manipulations on the model give strong credence to the corresponding semantics.

T

v
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2.4 Control Flow Graph

For the reasons stated in the sections above, it is desirable to represent or model a

program with a flow graph. To do so, we must provide a mapping from the program to
the flow graph. An example of such a mapping is the partial graph grammar of Figure 5,

adapted from Hecht [21]. This example grammar uses syntax-directed translation to map

an abstract program into a program flowchart. In this case, the resulting flow graph is a

traditional flowchart, with nodes being represented by closed figures of various shapes to

indicate their function in the pr0gr_: ....

A flowchart is used to depict the flow of

control in a program, hence the name

control flow graph. The nodes represent

program statements, predicates, and
branch targets, while the edges represent

potential control transfers among the
nodes. Notice that a flow graph generated

by the grammar of Figure 5 is strictly an

intraprocedural control flow graph, as no

provision is made to represent control

passing to a called subprogram or

returning from a subprogram. Also notice

that an edge a-_b does not mean that con-
trol must transfer from a to b during pro-

gram execution, but only that it m/ght,
depending upon the input and the

program state. Control flow graphs and

the control flow analysis used to generate
them are well-studied in the literature; for

structured programs a single pass through
the source code is sufficient for their

construction. Constructing flow graphs for

unstructured programs which allow

arbitrary gotos can be more difficult (see,

_tOrl ProducllOfl

StOlSrlOflt

If' -Then

<

Repgo,

Figure 5 A simple graph grammar

for example, Wolfe [55]). For this mason, most researchers (e.g., [8,24,45]) confine
themselves to structured languages, or structured subsets of languages which do allow

non-structured constructs such as the exception mechanism of Ada.

As an example of a control flow graph, consider the program fragment in Figure 6.

Figure 7 shows a control flow graph for this program, with nodes labeled to correspond to

the line numbers of Figure 6. Line 7 of the program (end if) does not contain a statement,
but does represent the point at which control from the two branches of the if statement

rejoin to leave the if statement which begins on line 3. Since it is necessary for showing
control flow, it is given a node (node 7) in the control flow graph. Similarly, the beg/n on

line 1 and the end on line 9 represent the absolute start and end of control flow, respec-

tively, so they have nodes in the control flow graph. (They also serve as the start and

stop nodes of the flow graph.) In contrast, the e/se on line 5 does not have any control flow
(or data flow, see below) significance. Rather, it is simply the syntax mechanism for
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1 begin

2 input(x) ; def (2) :{x]

3 if (x=O) then ref(3):(x]

4 y := fl(x) ; def(4):{y)

5 else

6 y := f2(x) ; def(6):{y]

7 end if ;

8 output(y) ; ref (8) ={y]

9 end;

rd(3):{ (x,l) ]

ref(4)={x} rd(4):{ (x,l) }

ref (6) ={x} rd(6):{ (x,l) ]

rd(8):{ (x,l), (y,3), (y,4) }

L.

w

w

w

Figure 6 Program example for flow graphs

separating the two parallel clauses of the if-then-else
statement. Thus the else line has no node in the control

flow graph.

The node with the largest out-degree is node 3, while that

with the largest in-degree is node 7; these correspond to the

beginning and end of the if-then-else statement. The degree
of these nodes is 2, because they model the control flow of a

two-way branch. For some applications there would be

labels T and F on the two edges leaving node 3, correspond-

ing to the possible values of the branch predicate. An n-

way case statement in Pascal would be modeled very

simply with a pair of nodes of degree n above and below the

n nodes representing the n different cases, with the n edges

leaving the ease predicate node optionally labeled with the

possible values of the predicate. Because C has a more

complex case structure in which the use of break is optional,

the control flow graph modeling a C switch statement is

more complex than for Pascal. Specifically, the node

corresponding to the predicate of an n-way switch with a

Figure 7 Control flow

graph for Figure 6

default, counting the default as one of the n possibilities, must have out-degree n, while
the predicate node of an n-way switch without a default will often have out-degree n+l. 6

The in-degree of the node corresponding to the closing brace of the switch statement will

be in the range from 1 to n+l inclusive, depending upon the arrangement of breaks within
the switch statement.

For example, consider the C program in Figure 8 and a corresponding control flow graph

in Figure 9. Node 2, corresponding to the switch statement, has out-degree of 5 rather
than 4 as would a case node in a Pascal program. However, node 9, corresponding to the

closing brace on line 9, is of in-degree 4, not 5. This is because node 3, corresponding to

case 0 on line 3, has no break. Therefore control cannot flow directly from node 3 to node

9, but goes from node 3 to node 4. Since there is no range information for the function

The node will have out-degree n+l if the n choices of the switch fail to cover the range of the selector,
and out-degree n if the choices of the switch do cover the range of the selector.

- 10-



aO, there must be an edge from node 2 to

node 9, to account for the possibility that

aO may return a value not included in the

discrete range 0..3. An interesting feature
of a break statement is that it corresponds

not to a node in the control flow graph but

to an edge. This is because a break serves

to transfer control directly from the most

recent statement or predicate to the closest

closing brace. For example, the break on

line 7 corresponds to the edge (7,9), and
indicates that control may pass from the

predicate function e0 of node 7 to the

1 main () (

2 switch (a()) {
3 case O: b() ;

4 case i: c() ;

5 break ;

6 case 2: d() ;

7 if (e())

8 case 3: f() ;

9 ) /* end switch */

I0 }

break;

Figure 8 C case statement

closing brace of node 9. Ada's case is different from both C and Pascal as Ada requires
that coverage of the range of the selector by the set of choices be determinable at compile

time.

Very few slicing researchers treat case statements; a few

indicate that since a series of if-then-else statements can

be proven equivalent to any case statement, their treat-
ment of if-then-else is sufficient to guarantee that their

algorithms will slice a case statement after suitable code
transformation. Nowhere in the literature, however, is

there an attempt at a complete treatment of the slicing of
case statements.

2.5 Data Flow Graph

While a control flow graph as described above can be used

to capture some information about a program, particularly
its looping structure, there is much program information

which a control flow graph cannot contain. In particular,

program slicing as described in Section 3 cannot be

performed by using solely the information in a control flow

graph. Some of the information needed for slicing is con-
tained in a data flow graph, which holds in_0rmati0-n ..... _:

Figure 9 Control flow

graph for Figure 8

about a program's variable definitions and references. In current practice, data depen-

dences are usually computed alter first constructing various sets of statements which

definel reference, or use Specific sets of Varlables.The following definitions are necessary
before discussing the data flow graph proper.

A program variable is said to be defined (not related to a variable declaration in the
program-ming-l_guage-sense) inastatement if the ex_tion of that statementc_ alter

the value of the variable. Typically, variables are defined by assignment and input state-

ments. Conversely, if a variable is not defined in a statement, it is preserved in that

statement. A program variable is referenced in a statement if the value of that variable is
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used during the execution of the statement. 7 Associated with every statement s is a set

def(s) of variables which are defined in s. Similarly, there is a set ref(s) of variables

referenced in s. The values of variables in ref(s) immediately before s is executed
determine the values of def(s) immediately al_er s is executed. If d is a definition of

variable v in a statement represented by node s in a control flow graph, that definition

reaches node t iff there exists a path from s to t which contains no definitions of v other
than d in s. 8 Thus there is associated with each node t a set of reaching definitions, that

is, a set of variable definitions which reach t. The set rd(t) is a set of pairs (v,s), where v

is a variable defined at node s, which definition reaches t. Note that (v,s) can be a

member of rd(t) only if there is a path in the control flow graph from s to t. Data flow

analysis is used to determine the def, ref, and rd sets, and they are represented in a data

flow graph.

An example will serve to illustrate these information sets. Consider again the program

fragment in Figure 6 on page 10, which features various definitions of and references to

variables x and y. The program fragment in the figure is also annotated with variable
references, definitions, and reaching definitions, and has line numbers added. For this

example, we assume that the functions f/and f2 in lines 4 and 6 are free from side effects

with respect to x. That is, x is preserved in lines 4 and 6. 9

Figure 10, with the same node labeling, shows the reaching definitions of this program.

In the program of Figure 6, for example, note that the definition of x in line 2 reaches
lines 3, 4, 6, and 8. This is shown in Figure 10 by the edges from node 2 to nodes 3, 4, 6,

and 8. This means that rd(3) = rd(4) = rd(6) = {(x,2)}, and rd(8) includes (x,2). However,

nodes 1, 7, and 9 have no reaching definition edges. These nodes were strictly associated
with control flow and have nothing to do with data flow. 1° As in the case of the control

flow graph above, there is no node in the graph of reaching definitions corresponding to

line 5 of the program, as that line has syntactic meaning only. The definitions ofy in
lines 4 and 6 both reach the reference ofy in line 8, so with the inclusion of the reaching

definition of (x2) from above, rd(8) = {(x,2),(y,4),(y,6)].- N0te that in a single execution of

this program, only one of lines 4 and 6 can possibly be executed. Nevertheless, in this

static data flow analysis, which by definition does not contain information about the input

stream, either of lines 4 or 6 could be executed, and so both definitions reach line 8.

v

L _

w
w

A variable may be both defined and referenced in a single statement, or may be both preserved and
referenced, but cannot be both defined and preserved in a single statement.

This assumes that there is only a single definition of v in any node x. If there are multiple definitions,
then d is assumed to be the last definition of v in x.

It is impossible to tell that x is preserved in these lines by the information in Figure 6; it is assumed
here for simplicity. Only by examining either the complete source code or the formal specifications for
the two functions is it possible to guarantee that they produce no side effects on x. This anticipates the
discussion of the difficulties of interprecedural flow analysis.

10 In fact, they need not even appear in a data flow graph, but are included here for comparison with the
control flow graph above.
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Given the references and reaching definitions of each state-

ment, a data dependence is defined as an edge from a node
s where a variable v is defined to a node t where v is

referenced provided that the definition at s reaches t. That

is, dd(P), the set of data dependences for program P, is a set

of edges (s,t):

dd(P) = {(s,t)} 13 v [v • def(s) A v • ref(t) A (v,s)• rd(t)]

Figure 11 shows the data dependence graph for the
program of Figure 6. It is very similar to the graph of

reaching definitions in Figure 10, but does not have the

edge from node 2 to node 8. This is because, even though
the definition of x at node 2 reaches node 8, x is not refer-

enced at node 8, and thus there is no data dependence
based on x between nodes 2 and 8.

In program representations forconventional slicing,as well

as for standard compiler-based transformations such as

loop-unrollingoptimizations and constant propagation, all

controland data dependence analysis isperformed at the

statement or expression level.All the sets of discussed

above consistof setsof variablesor statements, and

similarly refer to variables or statements.

Traditionally, data flow analysis for such purposes as

program analysis and compiler optimization has been
concerned with how data flows through a program as the

execution of the program progresses. That is, it is
concerned with how the data values propagate through a

program. In slicing for debugging, however, the interest is
not in where the data is going, but in where it came from.

If a program outputs an erroneous value, indicating a bug,

the interest is in working backward to find the source of the

erroneous value, not in looking forward to see where the
erroneous value will go next. Therefore, some researchers

(e.g., Agrawal and Horgan [3]) reverse the direction of the

edges in flow graphs, producing a data structure in which
data flow can be traced backwards to locate the origin of an

erroneous value. Ottenstein and Ottenstein discuss the

value of a doubly linked flow graph implementation, to be

Figure I0 Reaching

definitionsfor Figure 6

©

Figure 11 Data depen-

dences for Figure 6

suitable both for tracing forward flow for optimization and for tracing backward flow for

slicing [38] (see also the discussions of the PDG in Sections 2.7 and 3.3.1).

2.6 Annotated Flow Graph

At the time that program slicing was being developed in the 1970s, control flow and data

flow graphs were well known. Hecht [21], for example, presented a number of algorithms
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for generating flow graphs for various purposes. One problem with these graphs,
however, is that they contain no information about the form of the original source code

from which they were generated. The transformations between code and flow graphs

were one-way, with no mapping from the graph back to the source. A slice, according to

the original definition, is a set of source code statements, not a set of nodes and edges in a

flow graph. Therefore a slicing procedure which is based on a flow graph requires data
structures which contain not only control and data flow information but original source

code information as well.

Such a data structure is called an annotated flow graph. In general, an annotated flow

graph is a regular flow graph as described above augmented with more information than

is necessary for strictly graph-theoretic manipulations of the graph. The augmented
information set allows inferences in program semantics to be made based on the

mathematical manipulations and analyses of the graph. For slicing, it is common for the
nodes to contain the text of the source code statement to which the node corresponds, or a

pointer to the statement, perhaps as a (file, line number) pair. For example, if the node

labels in Figure 11 were known to be strict line number references to the source code text

of Figure 6, then the graph in Figure 11 could be considered to be an annotated data

dependence graph. For slicing, the annotation needs to be sufficiently rich to allow a slice

in the form of syntactically correct source code text to be created from the subset of nodes

and edges which the slicing algorithm, working on the annotated flow graph, produces.

2.7 Program Dependence Graph

In 1984, Ferrante, Ottenstein, Ottenstein, and Warren presented their version of a

program representation mechanism called the program dependence graph [15,38]. Unlike
the flow graphs discussed above, a feature of the PDG is that it explicitly represents both

control and data dependences in a single program representation. Since efficient, minimal

slicing requires information about both kinds of dependences, the PDG has been adopted

as an excellent representation for use with slicing algorithms.

The PDG models a program as a graph in which nodes, as above, represent statements

and predicates, but the edges represent both data dependences and control dependences.

The data dependences are among the variables in the nodes and the control dependences
are those on which the execution of the statements in the nodes depend. Strictly

speaking, the PDG is a multigraph which can be simplistically viewed as the union zl of

a pair of subgraphs sharing a common set of nodes, one the control flow subgraph, and

the other the data dependence subgraph. Since there may be more than one edge

between a given pair of nodes, one edge representing a control dependence, one a data

dependence, the PDG is a multigraph.

The PDG represents control flow in a more sophisticated way than the previous forms
discussed. One of the problems of a standard control flow graph is that it can be very

difficult to generate sequential code from an arbitrary control flow graph, but that is a

specific requirement of a graph-based slicer. As the final step in the slicing process, the

w

11 In this form of graph union, we have set-union of nodes and bag-union of edges.
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slicer must regeneratesyntactically correct codefrom an arbitrary slicedgraph. There-
fore, rather than using naive control flow as described_abovefor the control subgraph,the
PDG incorporatescontrol dependencesinto its control subgraph. Every edgein a PDG
representsa dependence.

2.8 System Dependence Graph

The PDG has a number of desirable characteristics for slicing. However, the PDG as

described above does a poor job of handling procedure calls, because the PDG form was

developed largely for use in optimization transformations [15]. Opt_izations such as

branch deletion or loop unro_mg never cross procedure boundaries, at most, optirnlzations
transform procedure calls into inline substitution of the procedure body. But since the

PDG showed promise for slicing, it was extended by Horwitz, Reps, and Binkley into the

system dependence graph, which models a main program together with a set of non-nested
procedures [25]. This graph is very similar to the PDG; indeed, a PDG of the main

program is a subgraph of the SDG (i.e., for a program without procedure calls, the PDG

and SDG are identical). The technique for building a SDG consists of first building a

PDG for each procedure (functions _m_d as pr_dure§ _ an extra par_eter),

including the main procedure, and then adding auxiliary dependence edges which link the

subgraphs together. This results in a program representation which includes the informa-

tion necessary for slicing across procedure boundarieS.

The additional dependence edges which link the individual PDGs into an SDG are of the

same two types as previously discussed: control dependence edges and data dependence

edges. Control dependence edges link every call site of a procedure with the entry point of

the subprogram. The authors accomplish data flow analysis by invoking two temporary

variables and four graph nodes for each procedure parameter. One node is attached to
the calling procedure's graph to represent the value of the calling procedure's actual

parameter being copied into one of the temporary variables, while one node is attached to
the called procedure's graph to represent the value of the temporary variable begin copied

into the called procedure's formal parameter. The other temporary v_able and pair of

nodes are used at the called's procedure's return to transfer values back to the calling

procedure. Then for each parameter, a data dependence edge links each corresponding
pair of nodes, completing the linkage of individual PDC_ into a single SDG. In this way

the SDG models the exact calling context of each procedure call in the system.

3 An Overview of Conventional Slicing

This section presents a high-level description of program slicing and includes a history of

the development of slicing, followed by a consideration of attempts to assure the

mathematical basis and integrity of the models used. While there is some _scussion of

the formal technical aspects of slicing, we do not attempt to give a full presentation and

analysis of every slicing algorithm. Such treatments may be found in the references cited.

W

m
g

w
I

w

W

m
m

w

m

i
w

- 15 -

l
i

m

!



r

v

w

3.1 Weiser Slicing

3.1.1 Introduction

Weiser first presented program slicing in his doctoral dissertation, "Program slicing:

formal, psychological, and practical investigations of an automatic program abstraction

method" [50]. His original impetus was to develop slicing as an aid to program

debugging, inspired by the abstraction mechanisms used by programmers in analyzing

existing programs 12 while performing corrective maintenance to debug code.

Before Weiser's work, all abstraction mechanisms to date had decomposed programs into

"units" by grouping sequential program elements. At the lowest level, a raw dump of an

existing executable program consists of a very large number of homogeneous units, in this

case bytes, far too many for the mind to grasp. The process of understanding a program

consists of organizing this very large number of units into fewer units by some
mechanism, allowing the program to be viewed at a higher level of abstraction. For

example, a disassembler accomplishes this by producing a sequence of assembly language
statements from the raw dump, replacing many sequential bytes of the dump with a

single assembly language statement. At a higher level, a compiler allows the human to

deal with one source language statement instead of many assembly language statements.

Further, a hierarchicalorganization can be imposed on source statements by grouping

many sequential statements into subprograms, and then subprograms into packages or

abstract data types, and so on.

After a series of experiments in which he studied the behavior of programmers who were

attempting to comprehend and debug FORTRAN programs [50,52], Weiser concluded that
while the abstraction and grouping of sequential sets of statements did serve to aid in

program understanding, programmers who were specifically attempting to debug a

program used a different mental abstraction mechanism for grouping program statements.

In particular, they used an abstraction mechanism which grouped generally non-

sequential sets of statements. Weiser concluded that the statements grouped in this way

were those which applied to what he called "units of data components, _ which range in

size from simple variables to the data storage portions of large abstract data types.

Rather than looking at sequences of program statements, he found that he could under-

stand the mental abstraction of the debugging process by examining data flow diagrams of

the programs. He called his theory of data behavior abstraction slicing, and the units of

abstraction, slices. The slices abstract a program based on the behavior of a program with

respect to a specifiedset of data components -- variables-- rather than with respect to a

sequential statement listing.

Informally,Weiser defined a sliceas a projectionof a specifiedsubset ofbehavior from the

original behavior of the program. A slice is a complete program which contains a subset

of the statements of the original program, and which performs a subset of the

computations performed by the original program. The slice is obtained by removing

12 All work on slicing to date has considered only procedural languages. All discussions in this paper will

assume conventional languages such as FORTRAN, C, Pascal, and Ada unless explicitly noted
otherwise.
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statements 13 from the original program which do not affect the specified behavior of

interest. A slicing algorithm must ensure that 1) the slice contains only a subset of the

original program's statements, and 2) the behavior of the slice is also a subset of the
original program's behavior. Weiser defined behavior for this purpose as the sequence of

values taken on by a variable during the course of a program's execution. In other words,
if the value of variable X at some statement a is the behavior of interest, both the slice

and the program must compute the same value for X at a, assuming identical input.
Weiser used the term slicing criterion for the specification of the behavior of interest. His

slicing criterion for a program consists of a set of statements of the program and a set of

progr .am v_ables of interest at those s_te_en_ts. As_c_gc_te_o n "m o_y me_ngful :
in relation to a specific program, b: slice results from applying a specific slicing criterion

to a specific program. Weiser's slicing is characterized by performing static analysis on
unexecuted source code. The form of slicing which Weiser invented thus became known

as static slicing.

The reason that slicing is an aid to debugging is exactly because it projects out of a

program just those statements which contribute to the computation of the sequence of
values taken on by a variable. A bug is evidenced by incorrect program behavior, usually
noticed as an incorrect value of a variable. 14 Since every statement which could have

influenced the value of the variable is in the slice, then only the statements in the slice

must be examined to find the offending statement which caused the erroneous value; the

rest of the program need not be considered. Since the slice is no larger than the original

program, it is easier to find the offending statement in the slice than in the original

program. It also follows that the fewer the number of statements in the slice, the easier it

is to find the offending statement.

The requirement that a slicemust be compflable, a syntacticallycorrectexecutable

program in itsown right,is partlydue to the operational requirement in the definition

which statesthat a slicemust compute the same sequence of values for a set of variables

as did the originalprogram. The satisfactionof thisrequirement can only be

demonstrated ifthe sliceis executed with a specificinput,and the resultsobserved. The

requirement that a slicebe executable is also criticalfor some important applicationsof

slicing,such as paraUelization and reuse component generation. However, for some

applications,such as design recovery and module cohesion metrics,the requirement is not

necessary to enforce.

The definitionof slicingabove says nothing about the sizeor uniqueness of slices.In

general, there may be many sliceswhich correspond to a given slicingcriterionapplied to

a given program. The issues ofslicesize,and the factthat small or minimal slicesare

generally of the most interest,isdiscussed more in Section 3.1.2below. Intuitively,

however, Weiser argued that a small sliceismost interestingbecause slicingconsistsof

13

14

The removalofzerostatementsisallowedbythedefinition.

Inthecontextofdebuggingwithslicing,a bug onlyexistsifitisobserve& ifa programneverge_-the

inputwhichcausesan erroneousvalueforavariable,theprogramisconsideredbug-free.Thisisa
test-orientedviewpointratherthanaverification-orientedone.
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throwing away statements which have no influence on the remaining slice. Slicing

"successfully" consists of throwing away as many statements as possible, yielding a small

slice, while still meeting the requirements of behavior. We also note here that at least a

trivial slice always exists for any given program and slicing criterion. This slice is the
original program itself; it is generated by removing no statements from the program.

As an illustrative example of static

slicing, consider the Pascal program in

Figure 12 (this example was adapted

from [36]). This program computes the

sum and product of the in'st n natural
numbers. If we are interested in the

behavior of this code with respect to
variable sum at line 14,15 we use the

slicing criterion C = (14, sum}. That

is, we are interested in the value of

sum after the completion of the do-loop.

A slice which corresponds to this slicing

criterion applied to program

SumProduct is shown in Figure 13.

As this example illustrates, the

variable prod does not appear in this

slice, because prod does not contribute,

either directly or indirectly, to the

1

2

3

4

5

6

7

8

9

i0

ii

12

13
14

15

program Sum_Product;

var

i, n, sum, prod: integer;

begin

read (n) ;

sum := O;

prod := i;
for i := 1 to n do

Sum := Sum + i;

prod := prod * i;

end;

write (sum, prod) ;
end.

begin

Figure 12 Program Sum_Product

value of sum. That is, there is no data dependence between prod and sum. However, i, n,

and the control structure of the do-loop, are retained in the slice, as they do affect the

value of sum in the statement at the (original) line 14. There are various data and

control dependences among these program elements. Also retained in the slice are
elements of the program's syntactic structure such as begins, ends, and semicolons, as

they are necessary for the syntactic correctness of the slice as an executable program in

itsown right.

While this descriptionof slicingisstraightforward and intuitive,an attempt to implement

a slicerbased on itquickly uncovers a number of problems or issueswhich complicate the

process. The followingsubsectionsexamine some ofthese problems and issues.

3.1.2Problems With Undecidability

The above descriptionofslicingfailsto address two problems ofundecidabilitywhich

arise in slicing.The firstarisesbecause the descriptionof slicingincludes the require-

ment that the behavior ofthe sliceisa subset of the behavior of the originalprogram. In

other words, a slicingalgorithm must in effectguarantee the equivalence of (portionsof)

two arbitraryprograms. This is equivalent to the halting problem, and is thus

undecidable. This problem can be addressed by requiring that a slicingalgorithm need

only produce correctslicesfor the cases in which the program being slicedisknown to

15 There is a distinction between "statement 10" and _the statement which appears on line 10". We will
always employ the latter usage.
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halt. In this view, a sliceis considered
to be correct if, given the same input,

both the program and slice halt, and

produce the same sequence of values
for the variables named in the slicing

criterion before halting (see also

Section 3.5).

The second undecidable problem is the

problem of generating a minimal slice,

which is also equivalent to the halting

problem. Weiser used the term
statement minimal slice to mean a slice

which is a proper subset of every other

possibleslicefor that slicingcriterion.

Knowing at the outset that finding the

statement minimal sliceof an arbitrary

1

2
3

4

5
6

7

8

i0

Ii

13
14

15

program

var

i, n,

begin
read

sum •--

for i

sum

end;
write

end.

Sum_Product_l;

sum: integer;

(n);

O;
:= 1 to n do

:= sum + i;

begin

(sum) ;

Figure 13 Program Sum_Product sliced on

(14,sum)

program for a given slicing criterion is an undecidable problem, Weiser developed an

algorithm for approximating what he called data flow minimal slices [50]. That is, he

developed an algorithm which would produce the smallest slices that can be produced

solely by flow analysis of source code. We have already stated that small slices are the

most interestingfrom the point of view of slicingtechnique. Small slicesare alsomore

useful for debugging, because the smaller the slicewhich contains the bug, the less code

the programmer must examine to findthe bug.

To show that generating a minimal slice is equivalent to the halting problem, Weiser

argued as follows [50]. Consider the Pascal program in Figure 14 and the slicing criterion
(13, x). If f is a constant-zero function then the value ofx in the slice will be 1 for all

inputs. The smallest slice which can produce this behavior is the program:

begin; x:= 1; end.
However, determining whether an arbitrary total recursive function is a constant-zero

function [22] is undecidable. Thus there is no slicing algorithm guaranteed to produce the
minimal slice above. Another way of stating this is to say that a slicing program with

access to an oracle can always produce slices that are no larger than a slicing program
without an oracle. A consequence of thisisthat there isno algorithm which can be

guaranteed to produce allpossibleslicesof a program, because clearlythe set of all

possibleslicesincludes the minimal slice,which no algorithm can be guaranteed to

produce .........
+ : : _ _ = . .

As discussed in Sections 3 and 4, some of the work on slicing since its introduction has

involved efforts to work around and deal with these undecidability problems.

_.i.3 Loss of CriterionStatement

Another problem with the above slicingdescriptionisthat both the slicingcriterionand
the desired behavior ofthe slicereference one or more program statements in the original

program. But the sliceisformed by deletingstatements from the originalprogram. It

may happen that an originalprogram statement which isin the slicingcriteriondoes not

appear in the sliceat all,having been deleted in the slicingprocess,and so the slicing
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1 program p;
2 var x: integer;

3 function f (i: integer)

4 begin

5

6 {an arbitrary total

7

8 end;

9 begin
i0 read (x);

ii if f(x) = 0 then

12 x := I;

13 write (x);

14 end.

: integer;

recursive function}

v

m
w

m

L_

Figure 14 A program which blocks a minimal slice

criterion is undefined in the slice. To handle this situation, Weiser proposed using the

nearest successor to the statement in the original program which is also in the slice. In

more recently developed slicing techniques, this has become a moot point, as slicing using

a program dependence graph does not have the problem of criterion statement deletion
(see Section 3.3.1).

3.1.4 Statement Alteration vs Statement Deletion

The definition of slicing states that the only action which may be performed on a program
is the deletion of statements. But the slice shown in Figure 13 on Page 19 cannot have

been produced from Figure 12 simply by statement deletion, as an examination of line 4

in beth the original program and in the slice will show. The original line 4 is:
i, n, sum, prod: integer;

while the corresponding line in the slice is:
i, n, sum: integer;

Here, no statement was deleted. Rather, since prod does not appear in the slice, line 4

has been altered to produce the slice so that prod is absent. This is because the original

line 4 can be viewed as a composite of four variable declarations which the syntax of the

language permits to be shortened to a single statement. A similar situation exists

between the original line 14 of the program and its corresponding line in the slice. The

former is an output statement which references beth sum and prod, while the latter,

having been altered, references only sum. Because of this, slicing techniques which are
defined in terms of source code linenumbers usually make simplifyingrequirements such

as that each variabie declarationbe on-ase-p_ara-te-_e,aliow_gone-va_abie-_{ecl_ati6n

to be slicedaway independently of others,and that every input and output statement

referenceonly a singlevariable. When slicingisbased on alternate representations such

as flow graphs, each variable declarationwillhave itsown node in the graph, allowing

individualvariable declarations_ be deleted from the _ph. For the same sortsof

reasons, most researchers assume simplifyingrestrictionssuch as excluding multiple

statements on a singlelineof source code and C-stylemultiple assignments in a _single"

statement (e.g.,a ffib = c;).We emphasize that these restrictionsare only for simplicity,

not for any substantive theoreticalreasons. They merely represent messy implementation
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details which are normally omitted from prototypes whose main purpose is to explore
theoretical issues.

While the question of statement alteration is not an issue in understanding the theory of

slicing, in a practical application of slicing it is one of the details which must be managed.
Consider the case of a program being sliced to produce reuse repository components. In

this case, the name of each new component generated by slicing the original program

would have to be different so that the repository management system could keep track of

the new programs -- the slices -- separately from the original program. Notice that the

program names Sum_Product and Sum_Product_l in the two figures are different,

reflecting this.

3.1.5 Syntax Problems
Another problem is that blind deletion of lines in a program can quickly lead to a

syntactically incorrect slice. One of the requirements of a slice is that it be a compilable
program in its own right. If, while slicing a FORTRAN program, all the statements in the

then clause of an if-then-else statement are deleted, the result is syntactically incorrect

because FORTRAN doesn't allow an empty then clause. This problem has nothing to do

with the concept of slicing but is rather a language issue. Some languages allow null then

clauses, others do not. There are many such details peculiar to each language. To

attempt to eliminate these language details from the consideration of the central ideas of

slicing, Weiser stopped using the original source code, and instead used an _mnotated flow

graph as the basis for slicing. Subsequent researchers have followed his lead in this

regard, using various types of graphs as program representations for slicing, most using
some form of flow graph as the program representation. Weiser found the current

representation mechanisms not completely sufficient for his needs, and did considerable
work in developing new representation mechanisms adequate for performing slicing.

Since all subsequent work in slicing has continued this trend, to some extent the develop-

ment of slicing and program representation mechanisms have been parallel, and the

development of slicing techniques has driven development of program representation
mechanisms.

3.1.6 Other Issues _

Several other difficulties and anomalies involved in slicing brought up byvarious

researchers deal either with similar messy implementation details or with pathologic

cases and are very much side issues to the central theme of slicing. These are usually

dispensed with by imposing restrictions such as that a program to be sliced be

syntactically correct to start with [54], contain no _dead code [18], and no -nlnltialized
variables which might have indeterminate values [27]. As these _ often considered

appropriate restrictions for "good" programming style anyway, we shall adopt them in the

present discussion without loss of generality. Nevertheless, these sorts of issues must be

dealt with by a production slicer.

Similarly,slicingisgreatly complicated by such constructs as branch testexpressions and

I/O statement expressions which produce side effectswhen evaluated [45],and aliasing

procedure callsin the form of f(x,x)[25]. Again, we willnot discuss these sortsof cases

further.

- 21 -

7

I __

l •

m

W

w

_ m

u

m

i
mm



v

3.2 Slicing vs Traditional Modularization

There is an important conflict between slicing and all other traditional programming
abstraction techniques. From Parnas [39] to the present, a major focus of software

engineering technology has been to modularize programs. This focus strives to separate
portions of software systems into independent units, strictly controlling the amount of

internal information which each unit presents to the system as a whole, in order to

protect the internal operation and consistency of each unit. In general, this increases the
robustness of the entire system and makes each unit more reusable. Slicing, by contrast,

seeks to follow paths of information flow through a software system; in following an

information flow path any distance, a slice will quickly encounter a module boundary.

Whether the boundary is of a simple FORTRAN function call or of a separately compiled

Ada package, the information hiding mechanisms of the module boundaries tend to

frustrate the ability of a slice algorithm to follow the flow of information across those

boundaries. Further, the more stringent the information hiding mechanism, the more

difficult the slicing process.

This has led to the distinction between intraprocedural and interprocedural slices. An

intraprocedural slice is a slice of a monolithic, single-subprogram code module. An inter-

procedural slice is a slice in the context of multiple subprograms which may include proce-
dure and function calls and returns. No one has yet developed a slicer which can slice a

full Ada system which comprises multiple packages, and so no one has yet needed to

employ the terms intra-package and inter-paclm__ge. Weiser considered separately

compiled modules of SIMPL-D, but because of the limited interface information available

in that language, he could only make worst-case assumptions about the interior of a

separately-compiled module. For example, if a variable x is in the interface of a module Y

(e.g., the procedure call Y(x)) for which the source code is unavailable, it must be assumed
that x is modified in Y. This leads to the inclusion of the exitirety of Y in every slice

which includes x in the slicing criterion and a call to a component of Y. This inclusion is

conservative and safe, in that some code which cannot affect x may be included, but no
code willfailto be included which can affectx. This leads to a slicewhich is largerthan

itshould be, in that itcontains code which does not affectthe value ofthe variable of

interest.

3.3 Developments in Static Slicing

During the middle 1980s, few new resultsin slicingwere reported. Rather, the advance-

ment of slicingin the middle 1980s was largelyaccomplished by researchers who were not

working on slicingas a primary goal at all.Their resultshad the side effectof improving

slicingtechniques by advancing the theory and practiceof graph-based representation and

analysis of programs.

3.3.1 The Program Dependence Graph
In 1984, Ferrante, Ottenstein, Ottenstein, and Warren [15,38], studying a form of internal

program representation called the program dependence graph (PDG), demonstrated how

the PDG could be used as the basis of a new slicing algorithm. While the algorithm was

initially restricted to intraprocedural slicing, its importance was that it produced smaller

slices than Weiser's algorithm. This new method differed from Weiser's in an important
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way: it useda single reachability passof a PDG (seeSection3) rather than Weiser's
incremental flow analysis,and thus produceda slice in linear time. The initial
constructionof the PDG is a complex,time-consumingoperation, varying betweenO(n 2)

and O(n 3) depending upon the exact method used, where n is the number of nodes in the

data/low graph (and also the number of statements in the program), and e the number of

edges. Once the PDG is built, however, every slice can be computed in time linear in the

size of the sliced program. The process of building the PDG results in the compu_tion
and storage of most of the information needed to generate all the slices of the
program. 16 In Weiser's approach, every slice must be computed from scratch; no

information from the previous slice computation is kept; every slice generated with

Weiser's algorithm requires O(n2e) time. If the purpose of a specific application of slicing

is to locate a single program bug, then the effort of building a PDG may not be

worthwhile. Indeed, each time a programis modified, the P D G must also be modified to
reflect the new program structure. Updating the PDG of a large and complex program

after each program change is not a trivial cost if the program is undergoing extensive

modification. On the other hand, when the purpose of a specific slicing application is to

generate many slices of an unchanging program, such as slice-based total decomposition,

then the expense of building a PDG is amortized over the entire set of slices and provides

an overall cost savings.

Since a PDG does not consist of statements as does source code, slicing based on a PDG

cannot use statements and variables as a slicing criterion in the same way as slicing

based directly on source code. Rather, slicing a PDG must use a node (or set of nodes) as

the slicing criterion. Since a node represents a single program statement containing just
the variables referenced in that statement, a slicing criterion based on a PDG consists of a

statement and one or more of the variables in that statement. It cannot include a

variable not referenced in that statement -- that is, an arbitrary program variable. It

must instead use a statement and variables referenced in that statement. In practice,

thisturns out not to be a restriction,but in factremoves the problem of the slicecriterion

statement being absent in the slice.In PDG-based slicing,thisnever occurs. The one

serious flaw of PDG-based slicingisthat itis intraprocedural. The PDG was not designed

to capture controland data flow which crossed procedure boundaries. Weiser's algorithm

did produce interprocedural slices,even though the intraprocedural portions of those slices

were cruder than corresponding PDG-based slices.

3.3.2SlicingWith Relational Equations

In 1985, Bergerettiand Carrd [8]were studying control-and data-flow analysis of

programs by using the relationalalgebra paradigm. They developed a set of information-

flow relations,and noted, almost parenthetically,how slicescould be pulled directlyfrom

theirrelationaltables,once those tableshad been builtfor a given program. This

approach to generating slicesissimilarto Ottenstein and Ottenstein'sin that once the

structureof the program isanalyzed, any given slicecan be obtained in lineartime. This

16 This is not strictly true. Weiser had proven that computing the minimal slice is equivalent to the

halting problem, and the new PDG reachability method of computing slices did not invalidate that
proof. The new algorithm could produce all computab/e slices, but not every slice which an oracle could

produce. See Section 3.1.2.
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approach differs from the others considered here in that it is based on solutions to

relational algebra equations rather than on graphs. The algorithm fills relational tables
with information about the program in the course of solving the relational equations. Any

slice can then be extracted from the tables by performing an appropriate select on the

tables. The language which Bergeretti and Carr_ used, however, was a toy language,

containing only scalar assignment, if-then-else, and while-do constructs. This, the slices

produced by this technique were also strictly intraprocedural.

3.3.3 Interprocedural Slicing
In 1990, Horwitz, Reps, and Binkley [25] made a significant improvement in slice

generation technology by producing an interprocedural slicing algorithm based on the

system dependence graph which correctly accounted for each procedure's called and

calling contexts. Although Weiser's original work did in fact encompass interprocedural

slicing, his algorithm did not take the calling context into account, and thus his slices

were often much larger than necessary. This is because Weiser's algorithm made
conservative and safe worst-case assumptions on variables used as procedural parameters.

When using slicing for such purposes as program comprehension or bug location, a slice's

usefulness is in general inversely proportional to its size. The Horwitz, Reps and Binkley

algorithm made it practical for the first time to generate useful slices which cross proce-

dure boundaries. Interprocedural flow analysis continues to be a major topic in language

system research, and new results in this area will continue to improve static slicing

technology. For example, Burke and Choi [10] present a method for factoring aliases due

to reference parameter passing in procedure calls into data-flow analysis. Their method is

more efficient both in terms of time and space overhead of the analysis and in producing
less conservative data-flow information than previous techniques. Since Burke and Choi

do not address slicing, it is left to future researchers to incorporate the improved data-

flow analysis technique into an actual slicer.

3.4 Dynamic SHcing

In 1988, Korel and Laski introduced a new form of slicing [27]. This new form of slicing

is dependent on input data and is generated during execution-time analysis, as opposed to
Weiser's static-analysis slicing and is therefore called dynamic slicing. Similar to the

origins of static slicing, dynamic slicing was specifically designed as an aid in debugging,
and can be used to help in the search for offending statements which cause program error.

The definition of a dynamic slice is similar to that of a static slice. A dynamic slice is an

executable subset of the original program whose behavior is required to be identical to the

behavior of the original program with respect to some subset of program variables at some

statement. A dynamic slicing criterion of program P executed with input x is a triple

C = (x,/q,V), where I is the line number of the statement executed, q, if present, is the
repetition count of the Ith statement, and V is a subset of P's variables. 17 Given some

17 This/_ notation is somewhat different from the usage of Korel and Laski. They used q to indicate the
absolute count of a// statements executed. Here q is used only on a statement which is repeated, and
indicates the absolute number of times the Ith statement has executed since the beginning of program
execution. If q is absent, it indicates the default value of 1.

-24-



input x, a program executes statements in some order until the program halts. The

ordered list of statements which a program executes is called the trajectory of the

program. Dynamic slicing is based on a program's specific trajectory given a specific

input, rather than upon the space of all possible trajectories as is static slicing.

For example, consider the program

in Figure 15. Given the input

x t = (3, 4, 5, 6), this program has

the trajectory T I = (5, 6, 7, 8, 6, 7,
8, 9, 6, 7, 8, 11, 12, 11, 12, 11, 12);

for x 2 -- (2, 4, 6>, T2 = (5, 6, 7, 8, 7,
8, 11, 12, 11, 12). In general, for a

given input, some set of the st-
atements in the program do not

execute, other statements execute

once, and still others execute more

than once; the complete history of

which statements execute, and in

what order, is captured in the

trajectory. Only the statements in
the trajectory must be considered in

1 var

2 a: array [I..I0]

3 i, n: I..i0;

4 begin

5 read (n) ;
6 for i := 1 to n do

7 read (a[i]) ;

8 if (a[i] mod 2 =

9 a[i] := a[i] *

10 end;
Ii for i := 1 to n do

12 write (a[i]) ;
13 end.

of integer;

begin

i) then

2;

Figure 15 Program example for dynamic slicing

order to find a dynamic slice. For the program in Figure 15, a dynamic slicing criterion

might be C = (x 1, 122, a[2]), producing a dynamic slice which is identical to the original

program. Any static slice on the array would also produce this same program, with no
statements deleted. However, for the criterion C = (x 1, 121, a[1]), the corresponding

dynamic slice does not contain statement 9, as statement 9 does not affect the value of the

frost array element given the input of x r

We wish to point out that the original definition of static slicing does in fact require the

consideration of input datm In the definition, a slice was required to exhibit specific
behavior when it was run with specific input. The difference is that while the definition

of a static slice refers to input data, the algorithm for generating the static slice has no

need to refer to input. This is in contrast to dynamic slices, which do in fact need input

data for their generation.

Dynamic slicing was developed to overcome several specific deficiencies in the usefulness
of static slicing for locating program bugs. These deficiencies are due to the potentially

large size of a static slice compared to a dynamic slice, and _stem from the fact that

observed bug occurs at runtime, during actual program execution. A static slice is defined
on the condition that the program to be sliced te_ates on all possible inputs, even

those which are unlikely to be encountered in normal use. A bug, however, is noticed on a

specific input, There are several situations in which the structure of a program leads to

differences between static and dynamic slices of the program.

The first shortcoming of static slicing which dynamic slicing overcomes is due to the

handling of individualarray elements. In allstaticslicingto date, an array isconsidered

to be a singlevariable. Any modifying reference to any array element isconsidered to

alter the value of the entire array. This means that if a particular array element is part
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of the static slicing criterion, every reference to any of the array's elements becomes part

of the slice, regardless of whether the specific element of interest is affected. In dynamic

slicing, each array element is tracked as a separate data location, as shown in the

example above. The main reason that arrays are handled as they are in static slicing is
convenience. While some array element references can be determined statically (e.g., a[3]

always refers explicitly to a specific element), other references cannot (e.g., a[i]). Rather

than having two ways of handling array references, static slicing algorithms usually take

the easier approach of a single mechanism. (See also Section 4.4.7, Page 38). "

A second shortcoming of staticslicingis

that pointervariables severely compli-

cate slicing.Consider the C program

in Figure 16. A staticslicecorre-

sponding to the criterion(15,i)must

include every statement in the original

program. This is because at line 13,

the pointer variable p is being assign-

ed, and it is not possible for a static

analysis to determine to which variable

location p might point during some run

of the program. In a more complex

program, an integer pointer could be
pointing to any integer variable which

is visible in the current scope, and thus

an assignment to thispointer would re-

quire the inclusionofevery statement

in the current scope which includes an

integer variable. Indeed, while this

situationexistsfor a strongly typed

1

2

3
4

5

6

7

8

9

i0

Ii

12

13
14

15

16

17

#include (stdio.h}

void main (void)

{ int i = O;

int j = O;

int *p = &i;

char c;

C = getchar();

if (c == 'y')

p = &j;

*p = i;

printf ("i: %i\n",

printf ("j: %ikn",

i);

j);

Figure 16 Pointer variable program

language, for a language such as C the situationisworse. Since C allows void pointers

and limitlesspointer typecasting,a singlepointer variable can potentiallyrefer to every

data locationin the program. As Ferrante, Ottenstein,and Warren put it,'_Pointersin a

language such as C can preclude PDG construction altogether since they can point to

anything. In the worst case, one would have to conservativelyassume that allobjectsare

aliased"[15]. Not allpointers are so badly behaved, of course. The difficultieswith C's

pointers are due to that language's totallack of mathematical basis for any disciplined

use of pointers. At the opposite end of the spectrum, the use of pointers in a language

such as RESOLVE [40],which isbased very strictlyon mathematical concepts,is as

deterministicand verifiableas the use of any other reference mechanism [47]. Therefore,

static slicing a RESOLVE module with pointers should be no more difficult than static

slicing a RESOLVE module without pointers.

Even for C, though, pointers present no problem for dynamic slicing. Consider the

program in Figure 16, as shown in Figure 17, with the same variable and statement of
interest as before, and the same pointer variable p, in the context of dynamic slicing. Be-

cause a dynamic slice depends on the input to a specific execution, the value of c is known

during generation of the slice. This allows the inclusion of line 13 in the slice to be based

on whether the assignment at line 11 takes pla_. Because a dynamic slicing criterion is
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a triple, the criterion for this situation

could be (y,15,i) (that is, the charactery

is the actual input, the statement of

interest appears on line 15, and the
variable of interest is i). This criterion

generates the slice of Figure 17, which
static slicing cannot generate. The

distinction between static and dynamic

slices can be summed up by saying that a
static slice is all statements that could

influence the value of a variable for any

#include <stdio.h)

void main (void)

{ int i = O;

printf ("i: %i\n", i);

}

Figure 17 Pointer variable program sliced

on (y,15,i)

inputs, while a dynamic slice is all statements that did influence the value of a variable

for a specific input [3].

Korel and Laski's approach to computing dynamic slices was based on Weiser's original

incremental data flow analysis technique. But this incremental technique is 1) more

expensive and 2) produces larger slices than the dependence-graph techniques of
Ottenstein and Ottenstein [38] or the information-flow relations of Bergeretti and Carr4

[8]. However, just as static slices can be constructed using these newe r reachability

techniques, so also can dynamic slices. T_ was expounded by Agrawal and Horgan [3],
who develop the techniques of dynamic slicing in steps using five increasingly

sophisticated algorithms. The second of those algorithms computes exactly the same
slices as Korel and Laski's technique, although less expensively, ts The Agrawal and

Horgan dyn_c slice technol0gy, as--weH as Ho_tz, _ps, a_n_ Bin_ey statlc Slices, were

incorporated into a prototype debugging tool by Agrawal, DeMillo, and Spafford [1]. In

1991, they advanced dynamic slicing by developing methods to handle po_tc_rs and
composite data structures such _ arrays,reco_, and _ons, even=in-t:hecase of

unconstrained pointers without runtime checks, such as are found in C [2].

3/, Semantics and Mathematical Models

In ove_ew, conventional pro_ slicingconsistsOf t]ae-ln-tu]_velysimple p_ss of

deletingselectedstatements from a syntacticallycorrectprogram to produce a new,

smaller, syntacticallycorrectprogram slice,with certain requirements and constraints

placed on the relationshipbetween the originalprogram and the slice.

18 Agrawal and Horgan use a slightly different definition of a dynamic slice than Korel and Laski. This
allows them to produce smaller dynamic slices in their final algorithm. In addition, their approach is
less expensive, even for Korel and Laski slices. : ' _ r
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In general, the overall process of slicing as described in the current literature may be
presented as: 19

Original Code -* RepresentationA "-* RepresentationB -* New Code

Transformation Slicing Transformation

A Algorithm B

What assurance is there that the New Code which results from this process bears the

relation to the Original Code which the definition of slicing requires? There is no

absolute guarantee because all questions of program equivalence eventually reach the

borders of undecidability, but various researchers have directed their efforts towards

defining the process as precisely as possible and making the process as correct as possible.

A full treatment of general program equivalence is far beyond the scope of this paper, but
a few comments are in order.

To completely prove that the process above is correct would require that the three steps

above, the two Transformations and the Slicing Algorithm, each be separately proved

correct, and then that their composition also be proved correct. Furthermore, since each

researcher presents a slightly different variation of each of the steps, each researcher's
results in fact require a unique proof. In general, proofs of slicing algorithms in this

sense are not provided in the literature. Early reports of slicing in the literature made no

attempt to prove semantic results of slicing algorithms. In the late 1980s, researchers

began to consider the question of program semantics in intermediate representation and

slicing work. In 1988, for example, Hausler provided an alternate definition of slicing
based not on flow analysis at all but rather on the functional semantics of a specific

programming language. Hausler associated a denotational slicing definition with each

statement type in the program's grammar, thus allowing a systematic mathematical basis

for constructing slices [20]. Unfortunately, his results were based on a very simple
language, and it is unclear how they would be expanded to include any form of procedure
call or non-structured construct.

In the same year, Horwitz, Prins, and Reps reported that although the PDG representa-

tion of a program had been first proposed as early as 1972, no proof existed that two

unequivalent programs in source code form would map to unequivalent PDGs, and thus

there was no a priori reason to accept a PDG as an appropriate program representation

mechanism [24]. They proceeded to prove that in a certain defined sense, the PDG is

indeed an _adequate" representation mechanism, based on the concept of strong equiva-

lence between programs. Two programs are strongly equivalent iff given some initial
state and identical input, either both programs diverge 2° or both halt with the same

final state of all variables. They proved that if the PDGs of two programs are isomorphic

19

20

Or/_/na/Code and New Code can themselves be considered to be representations of abstract programs,
and so the upper line of the process could equivalently be written:
P,epresentationl_Heprese_n_Rep_e_h$"*Representation4.

Here divergence includes infinite loops and an abnormal halt due to an unrecoverable error such as
divide by zero or overflow.
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then the programsare strongly equivalent. However, their result applies only to a simplel
structured, scalar, intraprocedural language,and they did not considerslicing
transformations in their consideration. Repsand Yang extendedthis result to slicing by
proving two results. First, they showedthat if both the original program and the slice
halt on the same input, then their slicing algorithm guarantees that the slice and the

program will produce the same sequence of values for each variable in the slice. Second,

they showed that if their slicing algorithm is used to decompose a program into two or
more slices, then the program will halt on any state for which all the slices halt [4v5].

Again, these results apply only to a structured language. For their slicing algorithm,

Reps and Yang modify the Weiser's original definition, allowing a broader interpretation
of what is an accurate slice of a program by removing the previous restriction that the

order of statements in the slice must be identical to their order in the original program.

Determining that a slice is correct is based on isomorphism of the PDGs of program and
slice instead. Thus Weiser's original definition of a slice being produced strictly by

removing statements from a program is not accurate forReps-Yang slices.

Again studying a simple intraprocedural while-language, Lakhotia [29] provides a graph-

theoretic framework for helping to factor the issues of program semantics away from the

mechanics of slicing itself. The original definition of slicing applied to statements and

variables, thus explicitly grouping program semantics with slicing, while later slicing

techniques were defined in terms of graph operations which included program semantic
definitions of the individual operations. Lakhotia 1) explicitly translated Weiser slicing

into graph operations and 2) isolated the program semantics from the graph operations of

allthe slicingtechniques. This allows a more directcomparison of the differentversions

of slicing,and alsomakes more explicitwhich portions of slicingare concerned with

program semantics, and which with mechanical graph operations. Lakhotia, in fact,was

trying to eliminate allconcerns with program semantics from the mechanics of slicing,to

reduce slicingitselfto strictlygraph operations. In thisview, the issues of program

semantics are isolatedin the steps ofcreating the graph representation of the program

before slicing,and regenerating a program from the slicedgraph representation after

slicing.

Podgurski and Clarke [41] find the traditional definitions of control and data dependence
insufficient to deal with the semantics of a program being represented by a flow graph,

and introduce the notions of weak and strong syntacticdependence and semantic

dependence. These new types of dependence are refinements of previous definitionsof

types of dependences in an effortto more preciselystate the dependence relationships

within a program. As the authors reiterate,the general question of when an arbitrary

change in a program's syntax willalterthe program's semantics isundecidable. Efforts

such as these,however, continue to expand the envelope of situationsin which the

program semantics due to program changes can be understood, and thus the change

mechanisms safelyautomatech

In summary, intraprocedural controland data flow dependences for simple, structured,

scalarlanguages have been well enough studied, and theirsemantics well enough

formulated, that provable assertionsabout the semantics of slicesof terminating

programs can be statedfairlyconfidentlyfor several of the main slicingalgorithm

variants. In contrast,interproceduralflow analysis is stillan activearea of research,not

- 29 -

I

i --

I "

--- :z

I

I

I

w

h_

I

i

m

v



well enough understood for substantial proofs about the semantics of interprocedural

slices. Similarly, non-structured languages and languages with late binding or real-time
constraints have not even been considered for slicing, much less for formal semantic

proofs based on their slices.

4 Applications of Conventional Slicing

This section discusses the uses to which slicing has been applied or for which it has been

proposed. This list is intended to be comprehensive to date, but it is a certainty that new

applications will be found for slicing in the future. At the end of the section, we discuss

several possibilities for future applications.

Weiser built simple prototype FORTRAN and SIMPL-D slicers, but he and others envi-

sioned a robust, possibly integrated [38], language-independent slicing tool, which

accepted an intermediate program representation from one of a suite of language-specific

front ends. In his thesis, Weiser described four areas to which static slicing could be

applied. They were program maintenance, debugging, requirements verification, and

operating system kernel tailoring. Later, he added the ideas of program testing [54] and

of parallelization by assigning slices to separate processors for execution [51].

4.1 Maintenance

Most of the applications of slicing fall into the maintenance portion of software

engineering. This is partly because slicing is defined only on existing code, and partly
because of the nature of the interaction between slicing and programs. The suitability of

slicing for maintenance applications is due to the ability of slicing to abstract or respond

to certain patterns of knowledge or design information which is built into programs.

These patterns have been variously described as plans, cliches, and concepts (see Section

4.3 below). To accomplish the activities of software maintenance, it is necessary for the
maintainer to be able to recognize and sometimes isolate these patterns in programs. If

the maintainer is intimately familiar with the program, then this knowledge may already

be in hand. Sometimes, good documentation will supply the information. But often, this

information is not readily available, and must be extracted from the cede itself before

maintenance modifications can safely commence. U_'ortunately for the recovery of this

kind of knowledge, programmers are trained in the techniques of traditional hierarchical,
sequential modularization, and these techniques are heavily used in writing programs. 21

Since modularization frustrates the easy extraction of non-sequential programming

patterns, slicing tools have been employed, either to aid the maintainer in the recovery

effort, or by automation to somewhat obviate the need for the maintainer to directly
handle the information. With the understanding that this common theme of extracting

and managing non-sequential programming patterns or concepts runs through all

maintenance applications, we will now turn to a discussion of specific slicing applications.

21 We are not arguing that modularization is wrong or bad. Rather, our claim is that it is only one view of
design knowledge, and that as use of modularization tends to obscure other views, its exclusive use is
equivalent to working in 2-D when 3-D is available.
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While we discuss each application separately, it is clear that the greatest benefit from
each application will appear when each of these applications is incorporated into an

integrated software maintenance environment [31], or better yet, is incorporated into an

integrated software development environment.

4.1.1 Modification and Reverse Engineering

Gallagher and Lyle [18,33] developed an application for slicing by extending the definition
of slicing. They used current slicing techniques to create a decomposition slice. In"

contrast to a Weiser slice which uses a slicing criterion which names a statement or set of
statements at which the behavior of a variable of interest will be examined, a

decomposition slice is a slice on a variable which does not depend on a set of statements,
but includes all statements relevant to the variable of interest in the entire program.

They also introduced the notion of a slice complement which can be thought of as the

portion of the original program left when the decomposition slice is removed, plus the

statements required for syntactic correctness. The complement is also a slice.

Using this concept of a decomposition slice, Gallagher and Lyle decompose a program by

generating a decomposition slice on every program variable, and then arranging these

decomposition slices into a poset based on the partial ordering of set membership of

program st, atements. Their technique produces a total program decomposition, and thus
every statement is in at least one slice. The relationships among program statements

imposed by the poset structure allow them to assert four rules for modi_ng the program
which guarantee that 1) the modifications will only have an affect within the slice and not

in the complement (which is the rest of the program), and that 2) retesting the progrmn

aRer modification need only be concerned with the statements within the slice and not

those of the complement. Thus only the slice need be retested, not the entire program.

Gallagher and Lyle argue that using the decomposition poset with their rules of allowed

modifications in effect presents the maintainer with a semantically constrained context.
In traditional modification techniques, the maintainer is free to make any changes but

then must exhaustively test and analyze the results to ensure that no undesirable effects

have been inadvertently created. In contrast, Gallagher and Lyle's method prevents the

maintainer from making inadvertent errors in the first place with the aid of an automated

tool, thus greatly relieving the burden of post-testing on the maintainer. Presumably, the

added effort of formulating a desired modification within the constraints of the poset-
induced context ismuch lessthan the amount of post-testingwhich isobviated,resulting

in a considerable net savings of maintainer effort.

Carrying this idea a step farther, from the realm of a single standalone program
modificationinto the realm of integrated software maintenance, the poset structurealso

facilitatesthe redocumentation which iscriticalto the integrityof a long-livedsystem or

component. Asrincremental modifications are performed on a com_nent, the poset of

sliceswilldifferat particularv_ces from theorig_ poset. An examination of the

differencesspecificallyidentifiesthose portions of the current component which are in

need of redocumentation [7].
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4.1.2 Debu_in_

Debugging an existing program was the original impetus for the development of static

slicing, and it is still the application which automatically springs to mind when program
slicing is mentioned. In his thesis, Weiser provided experimental evidence that pro-

grammers unconsciously use a mental form of slicing when engaged in program

debugging, as well as empirical evidence that slicing did indeed aid programmers in bug

location. To date, the only application for dynamic slicing which has been advanced is

bug location of a working program. By definition, dynamic slicing depends upon ir_put

data, and so a dynamic slice is to some extent ephemeral, changing each time the program
is run with different data. Optimizations, transformations, any form of generic character-

ization, are only valid if they can be stated for all possible input values; dynamic slicing
cannot be used for these.

4.1.3 Integration of Proffram Variants

Horwitz, Prins, and Reps [23] developed the concept of using slicing to automatically

integrate two versions of a base program which had been developed separately, in

parallel. Consider the situation in which a stable, correct, base version of a program is

given to two teams of developers, each of which is charged with enhancing or perfecting a

distinct portion of the program. Starting with the original program Base, team a develops

program variant A and team b develops program variant B, each by modifying their

respective portion of the program. At the end of the development, the two variants must

be merged into a single new program while ensuring that 1) the new functionalities of the

modifications are incorporated into the result, and 2) the modifications do not conflict, or
"interfere _. Horwitz, Prins, and Reps formally defined this notion of interference, and

developed an algorithm which accepts as input three programs Base, A, and B, where A
and B are variants of Base, and produces as output either a new program C which

incorporates all the behaviors of A and B or the determination that the two variants
interfere.Slicingiscentral to the algorithm, in that itisused to determine the new

behaviors ofA and B, and to determine whether their behaviors interfere.The specific

algori_ they developed, however, Works only for a small structured language which

includes assignment, conditional,and while statements with no subprograms, pointers,or

non-scalar variables.

4.1.4 Parallelization

An applicationof slicingwhich was discussed at length in the early 1980s (e.g.,[53])isits

use to decompose a conventional program into substantially independent slices for

assignment to separate processors as a way to parallelize the program. Interest in this

application for slicing has recently revived, and it is a current research area of

considerable activity[_i__]. A program for which sliceswith small overlap

can be found would be an appropriate subjectfor thistype of parallelization.Assuming

that a combination slicer-compilercould produce a slicedexecutable suitable for a parallel

machine, an issue of some complexity isthe problem of reconstructingthe original

behavior by %plicing_ the resultsof the separate outputs ofthe slices.A study of this is

given in [53].

4.1.5SoRware Portability

A very recent applicationwhich has been proposed for slicingisslicingto aid software

portability[34]. Consider a software system which was written with a specificplatform as
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its target. Scattered throughout the system might be operating system calls or data

structures which assume a specific numerical format. Porting the system to a new

platform requires finding and modifying all portions of the system which depend on the

original platform. This familiar task is usually frustrating due to the ease with which

bugs can be introduced due to hidden linkages and dependences in the system.

For example, consider the case of a program which peffo_file I/O by declare" g a file
block data structure variable and repeatedly passing the address of this variable t5

various operating system I]O procedures. Locating and isolating every instance of file PO
in this program consists merely of using the file block data structure variable as the

slicing criterion. Then to port this software to a different platform which uses a different

I/O mechanism, the modification techniques of Cvallagher and Lyle mentioned above will

guarantee that the modifications are made safely without introducing bugs into the

balance of the program. :: :

4.2 Non-Maintenance Software Engineering

4.2.1 RequirementsVerification
Consider a compiler designed with two main functionalities, producing object code and

producing a cross-reference listing; ex__ution-t_me s_tches cpntrol whe_¢r each

functionality is enabled. Also assume that the compiler was developed to meet a specific

set of stated requirements. In this situation, the complete compiler can be considered to

be an amalgam of two separa_ quasi-indepe_p-dept _s_p-ro-_-_IC0d -e _enerator _d
cross-reference genera_r. Clearly the progr_ _ be:_tten _v_ _e two m_

functionalities of code generation and cross-reference generation intermixed in its source

code. Some functionalities in the program, such as lexical _nalysis, will be shared by both

generators, while others will be S_ific to the code generator or to the cross'refere_nce=r.
Therefore, the portions of the program which meet the requirements of code generation

are not all grouped together, but are spread throughout the program, and similarly for the

requirements of the cross-reference generator. Identifying those po_ons of the program

which satisfy the requirements for _e code generator would be a difllctflt task__n a large

system, there would be hundreds or thousands of requirements, and evaluating the :
conformance to each is a major task _ sol'ware development. A slicer, h0weve-r, beifig: ::

able to project out of the large system a single behavior of interest, can produce a slice

which contains only, say, the code generator, allowing an easier evaluation of how well

the code generator conforms to its requirements. W#iser d esc_bod _ _ of : ...........

requirements analysis in his paper [50], but to our knowledge it has never been pursued.

4.2.2 Module Cohesion
In 1989, Ott and Thuss [36] used siice profdes as ameaus of helping to quantify the

somewhat subjective determination of module cohesion in a program. High module

cohesion has been proposed [11] as a desirable property of software design, but its

standard definition is subjective, making it difficult to use in practice. Ott and Thuss

showed that the degree of cohesiveness of a module can be determined by examining slices

generated using the output variables of the module in slicing criteria. Their work strictly
uses intraprocedural Weiser slices.
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4.2.3 Dead Code Elimination

In the interest of making the list of slicing applications complete, we mention a slicing-

based technique for dead code elimination which was described by Gallagher [17]. As

described in Section 4.1.1, a program can be totally decomposed into slices by creating a

decomposition slice for every variable in the program. If the original program contained

no dead code, then the union of all the decomposition slices is the original program. But

if the original program P contained dead code, then P - (union of slices) = dead code.

While this is a method for dead code recognition, even Gallagher admits that it is

probably not an efficient one, and in fact its effectiveness is dependent on the

effectiveness of the slice algorithm underlying the decomposition.

4.3 Related Work

The notion of organizing a program in ways other than the traditional hierarchy of units

of increasing abstraction is not unique to slicing. Soloway and Ehrlich [49] developed the

theory that programming knowledge consists in part of programming plans. A

programming plan is an abstract structure which a programmer uses as a template or

link between a goal and a program fragment instance. A programmer might use, for

example, a data guard plan to help accomplish the goal of preventing division by zero. In

the program, the data guard plan is manifested in the test predicate and control structure

necessary to prevent division by zero, while allowing division by appropriate values.
While a plan may be a single abstract entity, it is manifested in a program by statements

which are, in general, non-sequential. Furthermore, in many cases, an appropriate choice

of slicingcriterionapplied to a program segment issufficientto recover an intactplan as

a slice.

Rich and Wills [46]have developed a prototype module of the Programmer's Apprentice

calledthe Recognizer which automatically recognizes cliches,which essentiallyare the

manifestation of plans in programs. Similarly to slicers,the Recognizer storesprogram

information in the form of a flow graph; the clichdsare found by graph analysis.

In a very similar vein, Kozaczynski, et al., use a combination of syntax patterns and data

flow analysis to identify program concepts in COBOL code [28]. Their emphasis is on

abstract concepts which represent language-independent ideas of computation and

problem solving methods. Their purpose is to be able to apply specific types of

maintenance-related transformations to programs automatically by recognizing and

transforming a concept pattern, with the burden of code comprehension shiited from the

maintainer to the concept recognizer.

4.4 Future Work in Conventional Slicing

4.4.1 Slicinga Real Lan_a_e

To date, the vast majority of slicingalgorithms, whether manual or implemented, apply

only to very restricted,or toy,languages. Often these languages require additional non-

standard extensions,such as variable listsin the end statement, to enable the slicing

algorithms to work. we have already mentioned that much slicinghas been performed on

languages without procedure calls.Weiser did most of his work using FORTRAN IV,

which lacks recursion,pointers,nested procedures, case statements, and complete
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(nestable) if-then-else constructs. In 1988, Horwitz, Prins, and Reps [23] were still

reporting major results based on a tiny language having only scalar variables and

constants, assignment and conditional statements, and while loops without breaks. In
late 1991, Livadas, Croll, and Roy [30,31], reported on the p- and c-Ghinsu toolsets which

respectively slim subsets of standard Pascal and ANSI C, not including pointer variable

declaration, aliasing, recursi0n, or i/()' To date, however, no one has written a slicer for

the full grammar of a mainstream language. In addition, no one has dealt in the
literature with the ramifications of multiple exits in either procedures or loops; sli_ing

tasks was mentioned in the Future Research section of Lyle's thesis [32], but there was no

indicationof how thiscould _ acc0mplished _slicing,in the p_sence of latebinding or
real-time constraintshas not even been mentioned in the literature.

Extending current static slicing to handle multiple-exit procedures or loops may need only

persistence, perhaps messy but straightforward. The two areas of tasking and late bin-

ding, however, are likely to involve a great deal of effort and to produce considerable

results in program analysis. For example, how would dynamically created tasks be
represented in a system dependence graph? What wouIdbe involved in slicing generic

tasks? Do some tasking synchronization mechanisms make slicing particularly difficult,

or fruitful; do some allow task slicing to be reduced to the simplicity of subroutine slicing?.
How does late binding affect the process of static slicing?

4.4.2 Slicing _ge Programs

Weiser [50] reported slicing a FORTRAN program of 380 lines. Basili and Reiter [4]

reported slicing FORTRAN programs, the largest of which was 900 executable statements,

and gave some results on the complexity and time requirements of the slicer used. Much

more recently, Ottenstein and Ellcey [37] reported generating PDGs for FORTRAN pro-

grams (not actually slicing them, but just building the PDGs), the largest of which was

1144 statements, and the largest module of which was 230 statements. What happens

when large programs, e.g., programs consisting of 106 SLOC, are sliced? Do the slices
change in character, or are there simply more of the same type? These questions cannot

be answered in general until working slicers are built for real languages.

4.4.3 Slicing a Modern Lan_a_e
One of the languages which Weiser studied [51] was S_L-D: _ language allows

separate compilation of modules, as do many modern languages. Weiser noted the
difficulties that this caused for slicing, and handled the problem by falling back to a

conservative and safe worst-case assumption in which a called procedure in a separately

compiled module will change the value of every global variable, and every local variable

bound to the formal parameters in the call. This worst-case assumption was necessary, as

not enough information is available in a static analysis of SIMPL-D to improve upon it.

Ada, however, provides several mechanisms (such as the in/out mode of parameters and

the library management features of an Ada environment) which allow much better

analysis than the worst-case assumption. In addition,Ada has many features which

languages such as FORTRAN and Pascal, the basis of most slicingresearch, do not have.

Tasking, generics, ex_ptions,=nestable declaration bilks, o_]oa_g, =ahd_par-a_ .......

compilation are just some of the features of Ada which present novel aspects for would-be

slicers. No one has studied these mechanisms for the purpose of slicing, or examined how
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they enable or hobble slicing. Conversely, no one has studied how slicing may affect any

of these features. Ada, of course, is not unique in having these features; we are merely

using it as an accessible example of modern language features which slicers have yet to
address.

Other, more recent languages have features not found in Ada. Even without moving

beyond the realm of strictly traditional procedural 3GL languages, there are features such

as incremental compilation [16] which surely would be influenced by slicing. Conmdering

newer languages which contain assertions and invariants, might not a compiler which

includes a slicer be able to use these constraints upon which to base a code-reduction

slice, much like a dynamic slicer uses the input data constraints to limit the slice size?

Again, such ideas have yet to appear in the literature. Another untouched language topic

is slicing a non-procedural language.

4.4.4 A Bestiary of Slices

Weiser [54] provided several metrics for static slices, including coverage, overlap,

clustering, parallelism, and tightness. However, these metrics were given separately, and

it is not clear whether they sufficiently orthogonal to establish a taxonomy. If not, the

question is immediately raised as to what other form of metric is needed to cover a

taxonomy. Going beyond static slices, there is a question of extending the taxonomy

sufficiently to include dynamic slices as well. Dynamic slices are of the same sort as

static slices, in that they are sets of program statements. Clearly dynamic slices can exist

in a poset of static decomposition slices, but this is merely an arrangement of instances,

not a taxonomy of mechanisms themselves.

Extending the logic of the previous paragraph, do slices, in fact, provide a way of

characterizing programs? In 1988, Horwitz, Prins, and Reps [24] discussed equivalence

and isomorphism in PDGs and their associated programs. Since a slice projects isolated

behaviors from a program, is it possible to abstract a program's behaviors into its slices

and thus characterize the program? Do the slices thus provide a _behavior signature _ of

the program? If behavior is too large a concept for slices to adequately encompass, do

slices still provide a program signature of some sort which would be of either practical or

theoretical interest in characterizing, classifying, describing, or retrieving the sliced arti-

facts? It is possible that most programs, or at least most programs in a narrowly defined

domain, each contain a subset of a set of _basic _ or _standard _ slices, up to isomorphism

and renaming, with the program's unique features isolated in a few unique slices. If this

is the case, then slicing can provide an automatic characterization of each program, with

the standard slices indicating the program's inclusion of standard domain-specific

features, and the unique slices indicating the program's unique features.

4.4.5 Generating Reuosito .ry Components
At the end of their 1991 paper [18], in the Future Directions section, Gallagher and Lyle

mention evaluating slices as candidates for inclusion in a sol, ware repository. Of course,
actually building useful repository components by slicing will have to await the

development of a tool which can slice a real language. But assuming that a real slicer is

available, the question, "What is involved in creating and reusing a reusable component

by slicing?" is decidedly non-trivial. For example, it seems that a reasonable requirement

for decomposition by slicing would be reversibility. Given a program with three

- 36 -



functionalities (suchas the unix wc utility described by Gallagher and Lyle), and

assuming one has sliced the three functionalities into three separate reusable components,

how does one go about reconstructing the functionality of the original program from the

three components? What kind of interface does each component have? If they interact in

the original program, is their interaction preserved after decomposition and reassembly?

Does the preservation depend upon the nature of the original interaction? All of the

slicing criteria described to date [29] consist of either a statement set alone, with no
variable set specified, or upon both a statement set and a variable set. However, i_r gen-

erating repository modules, completely decomposing a module into the largest number of

slices, without regard to statement number at all, may be the most logical generation

technique. But "largest number" varies according to slicing methodology. Should the

slices be independent, or can overlapping, dependent slices be useful in a repository? In

the literature, no one has yet considered a methodology for generating reusable

components by slicing.

4.4.6 Static Slices via Dynamic Slicing

There is a gulf between the camps of dynamic andstatic slicing rese_hers. In much of
the literature on dynamic slicing, and in some on static slicing (e.g. [31]), proponents of

one camp refer to the other merely by pointing out the advantages of their version of

slicing for a particular application, but no one has _y investigated the r_elationship
between them. As discussed_ _ction 3, _a-gHer _dLy]e_[18] discuss_arr_ging ....

static slices in a poset. Since dynamic slices are simply subsets of program statements

just like static slices, dynamic slices must have a place in the pose t of static slices. More
to the point, it is obvious that a dynamic slice must be a subset of some static slice, .....

although to our knowledge this has not been proven or even stated before. In general, the

relationship between static and dynamic slices in the _t has not been considered in the
literature.

Because dynamic slici.ng does not involve the complex and expensive static program

analysis which characterizesstaticslicing,itiseasierto perform than staticslicing.

Several of the most difficultsituationsfor staticslicing,e.g.,interprocedural slicing,

pointers,or large arrays,present no particularproblems fordynamic slicing._ er_eforeit

seems that a potential exists f0r-a new-apPlication for dyn_c sliclng, the_si_bi-llt-y of

approximating a static slice by taking a "limit," or some form of sequence or aggregation,

of dynamic slices. This technique might be useful in those cases in which a static slice is

particularly _cult to generate, _s_; _ause of extensive use of pointers, a_Very

complex data flow analysis, or a highly unstructured program.

Similarly, finding the statement-minimal sta_c s_ce of a given slicing _terion, while

desirable, is undecidable. If a technique for approximating static slices by- dynamic slices

were developed, then perhaps a minimal static slice could be approximated, thus

overcoming some of the problems with _decidabflity, or at leastexpan_dingthe envelope

of those staticsliceswhich are computable. Even ifno absolute tecImique for generating

staticfrom dynamic slicesispossible,the investigationmight provide heuristicsfor better

approximating algorithms for staticslices.
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4.4.7 Handling Individual Array Elements

Another way of pushing the envelope of static slices is to better handle array references.
Recall that this was one of the reasons cited for the development of dynamic slicing. One

possible approach for refining array element reference in static slicing has been developed

by Mullin [35], studying the shapes of array operators in general and the indexing
operations and partitioning of arrays in particular. She has developed a mathematical

formalism for partitioning arrays based on the _ function, a generalized array indexing
function. This function describes a class of array operations which Mullin used to'build a

group of theorems describing common situations which involve arrays in algorithms and

programs. One such situation which Mullin models this way is concurrency of sub-array

operations. While Mullin does not explicitly discuss slicing, the similarity of partitioned

sub-array operations for slice independence and concurrent sub-array operations for

parallelism (which she does discuss) gives a strong indication that her techniques would

be applicable to finer static analysis of array references for slicing.

A feature of Ada which points to another way of refining array element references is the

array slice mechanism. This mechanism is somewhat of a combination of subtyping and

subranging operations performed on-the-fly, and could be used as a mechanism by the

programmer to make the program more sli_able. A language which implemented a more

strict and formal mechanism of subtyping of array element references would facilitate

precise slicing of arrays without conscious effort on the part of the programmer.
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